3.2.26 \(\int \frac {a+b \text {ArcSin}(c x)}{x^2 (d-c^2 d x^2)^{3/2}} \, dx\) [126]

Optimal. Leaf size=150 \[ -\frac {a+b \text {ArcSin}(c x)}{d x \sqrt {d-c^2 d x^2}}+\frac {2 c^2 x (a+b \text {ArcSin}(c x))}{d \sqrt {d-c^2 d x^2}}+\frac {b c \sqrt {d-c^2 d x^2} \log (x)}{d^2 \sqrt {1-c^2 x^2}}+\frac {b c \sqrt {d-c^2 d x^2} \log \left (1-c^2 x^2\right )}{2 d^2 \sqrt {1-c^2 x^2}} \]

[Out]

(-a-b*arcsin(c*x))/d/x/(-c^2*d*x^2+d)^(1/2)+2*c^2*x*(a+b*arcsin(c*x))/d/(-c^2*d*x^2+d)^(1/2)+b*c*ln(x)*(-c^2*d
*x^2+d)^(1/2)/d^2/(-c^2*x^2+1)^(1/2)+1/2*b*c*ln(-c^2*x^2+1)*(-c^2*d*x^2+d)^(1/2)/d^2/(-c^2*x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.11, antiderivative size = 150, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 6, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {277, 197, 4779, 12, 457, 78} \begin {gather*} \frac {2 c^2 x (a+b \text {ArcSin}(c x))}{d \sqrt {d-c^2 d x^2}}-\frac {a+b \text {ArcSin}(c x)}{d x \sqrt {d-c^2 d x^2}}+\frac {b c \log (x) \sqrt {d-c^2 d x^2}}{d^2 \sqrt {1-c^2 x^2}}+\frac {b c \sqrt {d-c^2 d x^2} \log \left (1-c^2 x^2\right )}{2 d^2 \sqrt {1-c^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcSin[c*x])/(x^2*(d - c^2*d*x^2)^(3/2)),x]

[Out]

-((a + b*ArcSin[c*x])/(d*x*Sqrt[d - c^2*d*x^2])) + (2*c^2*x*(a + b*ArcSin[c*x]))/(d*Sqrt[d - c^2*d*x^2]) + (b*
c*Sqrt[d - c^2*d*x^2]*Log[x])/(d^2*Sqrt[1 - c^2*x^2]) + (b*c*Sqrt[d - c^2*d*x^2]*Log[1 - c^2*x^2])/(2*d^2*Sqrt
[1 - c^2*x^2])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 78

Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegran
d[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && ((ILtQ[
n, 0] && ILtQ[p, 0]) || EqQ[p, 1] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p + 1
, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))

Rule 197

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x*((a + b*x^n)^(p + 1)/a), x] /; FreeQ[{a, b, n, p}, x] &
& EqQ[1/n + p + 1, 0]

Rule 277

Int[(x_)^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x^(m + 1)*((a + b*x^n)^(p + 1)/(a*(m + 1))), x]
 - Dist[b*((m + n*(p + 1) + 1)/(a*(m + 1))), Int[x^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, m, n, p}, x]
&& ILtQ[Simplify[(m + 1)/n + p + 1], 0] && NeQ[m, -1]

Rule 457

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 4779

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))*(x_)^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> With[{u = IntHide[x^
m*(d + e*x^2)^p, x]}, Dist[a + b*ArcSin[c*x], u, x] - Dist[b*c*Simp[Sqrt[d + e*x^2]/Sqrt[1 - c^2*x^2]], Int[Si
mplifyIntegrand[u/Sqrt[d + e*x^2], x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IntegerQ[p
 - 1/2] && NeQ[p, -2^(-1)] && (IGtQ[(m + 1)/2, 0] || ILtQ[(m + 2*p + 3)/2, 0])

Rubi steps

\begin {align*} \int \frac {a+b \sin ^{-1}(c x)}{x^2 \left (d-c^2 d x^2\right )^{3/2}} \, dx &=-\frac {a+b \sin ^{-1}(c x)}{d x \sqrt {d-c^2 d x^2}}+\left (2 c^2\right ) \int \frac {a+b \sin ^{-1}(c x)}{\left (d-c^2 d x^2\right )^{3/2}} \, dx+\frac {\left (b c \sqrt {1-c^2 x^2}\right ) \int \frac {1}{x \left (1-c^2 x^2\right )} \, dx}{d \sqrt {d-c^2 d x^2}}\\ &=-\frac {a+b \sin ^{-1}(c x)}{d x \sqrt {d-c^2 d x^2}}+\frac {2 c^2 x \left (a+b \sin ^{-1}(c x)\right )}{d \sqrt {d-c^2 d x^2}}+\frac {\left (b c \sqrt {1-c^2 x^2}\right ) \text {Subst}\left (\int \frac {1}{x \left (1-c^2 x\right )} \, dx,x,x^2\right )}{2 d \sqrt {d-c^2 d x^2}}-\frac {\left (2 b c^3 \sqrt {1-c^2 x^2}\right ) \int \frac {x}{1-c^2 x^2} \, dx}{d \sqrt {d-c^2 d x^2}}\\ &=-\frac {a+b \sin ^{-1}(c x)}{d x \sqrt {d-c^2 d x^2}}+\frac {2 c^2 x \left (a+b \sin ^{-1}(c x)\right )}{d \sqrt {d-c^2 d x^2}}+\frac {b c \sqrt {1-c^2 x^2} \log \left (1-c^2 x^2\right )}{d \sqrt {d-c^2 d x^2}}+\frac {\left (b c \sqrt {1-c^2 x^2}\right ) \text {Subst}\left (\int \frac {1}{x} \, dx,x,x^2\right )}{2 d \sqrt {d-c^2 d x^2}}+\frac {\left (b c^3 \sqrt {1-c^2 x^2}\right ) \text {Subst}\left (\int \frac {1}{1-c^2 x} \, dx,x,x^2\right )}{2 d \sqrt {d-c^2 d x^2}}\\ &=-\frac {a+b \sin ^{-1}(c x)}{d x \sqrt {d-c^2 d x^2}}+\frac {2 c^2 x \left (a+b \sin ^{-1}(c x)\right )}{d \sqrt {d-c^2 d x^2}}+\frac {b c \sqrt {1-c^2 x^2} \log (x)}{d \sqrt {d-c^2 d x^2}}+\frac {b c \sqrt {1-c^2 x^2} \log \left (1-c^2 x^2\right )}{2 d \sqrt {d-c^2 d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.15, size = 117, normalized size = 0.78 \begin {gather*} -\frac {\sqrt {d-c^2 d x^2} \left (-2 a+4 a c^2 x^2+2 b \left (-1+2 c^2 x^2\right ) \text {ArcSin}(c x)+b c x \sqrt {1-c^2 x^2} \log \left (x^2\right )+b c x \sqrt {1-c^2 x^2} \log \left (1-c^2 x^2\right )\right )}{2 d^2 x \left (-1+c^2 x^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcSin[c*x])/(x^2*(d - c^2*d*x^2)^(3/2)),x]

[Out]

-1/2*(Sqrt[d - c^2*d*x^2]*(-2*a + 4*a*c^2*x^2 + 2*b*(-1 + 2*c^2*x^2)*ArcSin[c*x] + b*c*x*Sqrt[1 - c^2*x^2]*Log
[x^2] + b*c*x*Sqrt[1 - c^2*x^2]*Log[1 - c^2*x^2]))/(d^2*x*(-1 + c^2*x^2))

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.20, size = 240, normalized size = 1.60

method result size
default \(a \left (-\frac {1}{d x \sqrt {-c^{2} d \,x^{2}+d}}+\frac {2 c^{2} x}{d \sqrt {-c^{2} d \,x^{2}+d}}\right )+\frac {2 i b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right ) c}{d^{2} \left (c^{2} x^{2}-1\right )}-\frac {2 b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right ) x \,c^{2}}{\left (c^{2} x^{2}-1\right ) d^{2}}+\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right )}{\left (c^{2} x^{2}-1\right ) d^{2} x}-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \ln \left (\left (i c x +\sqrt {-c^{2} x^{2}+1}\right )^{4}-1\right ) c}{d^{2} \left (c^{2} x^{2}-1\right )}\) \(240\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsin(c*x))/x^2/(-c^2*d*x^2+d)^(3/2),x,method=_RETURNVERBOSE)

[Out]

a*(-1/d/x/(-c^2*d*x^2+d)^(1/2)+2*c^2/d*x/(-c^2*d*x^2+d)^(1/2))+2*I*b*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)
/d^2/(c^2*x^2-1)*arcsin(c*x)*c-2*b*(-d*(c^2*x^2-1))^(1/2)*arcsin(c*x)/(c^2*x^2-1)/d^2*x*c^2+b*(-d*(c^2*x^2-1))
^(1/2)*arcsin(c*x)/(c^2*x^2-1)/d^2/x-b*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/d^2/(c^2*x^2-1)*ln((I*c*x+(-c
^2*x^2+1)^(1/2))^4-1)*c

________________________________________________________________________________________

Maxima [A]
time = 0.50, size = 129, normalized size = 0.86 \begin {gather*} \frac {1}{2} \, b c {\left (\frac {\log \left (c x + 1\right )}{d^{\frac {3}{2}}} + \frac {\log \left (c x - 1\right )}{d^{\frac {3}{2}}} + \frac {2 \, \log \left (x\right )}{d^{\frac {3}{2}}}\right )} + {\left (\frac {2 \, c^{2} x}{\sqrt {-c^{2} d x^{2} + d} d} - \frac {1}{\sqrt {-c^{2} d x^{2} + d} d x}\right )} b \arcsin \left (c x\right ) + {\left (\frac {2 \, c^{2} x}{\sqrt {-c^{2} d x^{2} + d} d} - \frac {1}{\sqrt {-c^{2} d x^{2} + d} d x}\right )} a \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(c*x))/x^2/(-c^2*d*x^2+d)^(3/2),x, algorithm="maxima")

[Out]

1/2*b*c*(log(c*x + 1)/d^(3/2) + log(c*x - 1)/d^(3/2) + 2*log(x)/d^(3/2)) + (2*c^2*x/(sqrt(-c^2*d*x^2 + d)*d) -
 1/(sqrt(-c^2*d*x^2 + d)*d*x))*b*arcsin(c*x) + (2*c^2*x/(sqrt(-c^2*d*x^2 + d)*d) - 1/(sqrt(-c^2*d*x^2 + d)*d*x
))*a

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(c*x))/x^2/(-c^2*d*x^2+d)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(-c^2*d*x^2 + d)*(b*arcsin(c*x) + a)/(c^4*d^2*x^6 - 2*c^2*d^2*x^4 + d^2*x^2), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {a + b \operatorname {asin}{\left (c x \right )}}{x^{2} \left (- d \left (c x - 1\right ) \left (c x + 1\right )\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asin(c*x))/x**2/(-c**2*d*x**2+d)**(3/2),x)

[Out]

Integral((a + b*asin(c*x))/(x**2*(-d*(c*x - 1)*(c*x + 1))**(3/2)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(c*x))/x^2/(-c^2*d*x^2+d)^(3/2),x, algorithm="giac")

[Out]

integrate((b*arcsin(c*x) + a)/((-c^2*d*x^2 + d)^(3/2)*x^2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {a+b\,\mathrm {asin}\left (c\,x\right )}{x^2\,{\left (d-c^2\,d\,x^2\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*asin(c*x))/(x^2*(d - c^2*d*x^2)^(3/2)),x)

[Out]

int((a + b*asin(c*x))/(x^2*(d - c^2*d*x^2)^(3/2)), x)

________________________________________________________________________________________